testing

Q. If a-\frac{1}{a}=7 then a^3-\frac{1}{a^3}= ?
Solution: We are given,


    \[a-\frac{1}{a}=7\]

[latex]
cubing both sides, we get:

    \[\begin{aligned}& a^3-\frac{1}{a^3}-3 \cdot a \cdot \frac{1}{a}\left(a-\frac{1}{a}\right)=7^3=343 \& \Rightarrow a^3-\frac{1}{a^3}=343+3\left(a-\frac{1}{a}\right) \&=343+3 \cdot 7 \&=343+21 \&=364 .\end{aligned}\]


Q. If a-\frac{1}{a}=6 then a^4+\frac{1}{a^4}= ?
Solution

    \[a-\frac{1}{a}=6\]


Squaring both sides, wa get

    \[\begin{aligned}& a^2+\frac{1}{a^2}-2 \cdot a \cdot \frac{1}{a}=6^2=36 \\Rightarrow & a^2+\frac{1}{a^2}=36+2=38\end{aligned}\]

Again Squaring both sides, we get

    \[\begin{aligned}& a^4+\frac{1}{a^4}+2 \cdot a^2 \cdot \frac{1}{a^2}=(38)^2 \& \Rightarrow a^4+\frac{1}{a^4}=1444-2 \&=1442 .\end{aligned}\]


Q. If a-\frac{1}{a}=7 then find

    \[\begin{aligned}& a^2+\frac{1}{a^2}\end{aligned}\]


Solution: \quad a-\frac{1}{a}=7
Squaring both Sides, we got

    \[\begin{aligned}& a^2+\frac{1}{a^2}-2 \cdot a \cdot \frac{1}{a}=7^2=49 \\Rightarrow & a^2+\frac{1}{a^2}=49+2=51 .\end{aligned}\]


Q. If a-\frac{1}{a}=1, then find

    \[\begin{aligned}& a^2+\frac{1}{a^2}\end{aligned}\]


Solution: squaring both sides, we get

    \[a^2+\frac{1}{a^2}-2 \cdot a \cdot \frac{1}{x}=1^2=1\]


    \[\Rightarrow a^2+\frac{1}{a^2}=1+2=3 \text { Ans. }\]


Q. If x-\frac{1}{x}=3 then find x^4+\frac{1}{x^4}.
Solution: We are given,

    \[x-\frac{1}{x}=3\]


Squaring both bides, we get

    \[\begin{aligned}& \left(x-\frac{1}{x}\right)^2=3^2=9 \\Rightarrow & x^2+\frac{1}{x^2}-2 \cdot x \cdot \frac{1}{x}=9 \\Rightarrow & x^2+\frac{1}{x^2}=11\end{aligned}\]


Again squaring both sides, we get

    \[\begin{aligned}& x^4+\frac{1}{x^4}+2 \cdot x^2 \cdot \frac{1}{x^2}=11^2=121 \& \Rightarrow x^4+\frac{1}{x^4}=121-2=119\end{aligned}\]

Q. If x-\frac{1}{x}=3, find x^5-\frac{1}{x^5}.
Solution:

    \[x^5-\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3-\frac{1}{x^3}\right)-\left(x -\frac{1}{x}\right)\]


\because we are given,

    \[\begin{aligned}x-\frac{1}{x} & =3 \x^2+\frac{1}{x^2} & =3^2+2=11 \x^3-\frac{1}{x^3}-3 \cdot x \cdot \frac{1}{x}\left(x-\frac{1}{x}\right)=3^3=27 & \\Rightarrow x^3-\frac{1}{x^3} & =27+3\left(x-\frac{1}{x}\right) \& =27+3.3 \& =27+9 \& =36\end{aligned}\]


\therefore Plugging the values, we get
*** QuickLaTeX cannot compile formula:
\[\begin{aligned}& 11.36-3 \= & 396-3 \= & 393 \quad \text { Ans. }\end{aligned}\]

*** Error message:
Argument of \add@accent has an extra }.
leading text: \[\begin{aligned}& 11.36-3 \= &
Paragraph ended before \add@accent was complete.
leading text: \[\begin{aligned}& 11.36-3 \= &
Missing $ inserted.
leading text: \[\begin{aligned}& 11.36-3 \= &
Missing } inserted.
leading text: \[\begin{aligned}& 11.36-3 \= &
Missing \cr inserted.
leading text: \[\begin{aligned}& 11.36-3 \= &
Misplaced \cr.
leading text: \[\begin{aligned}& 11.36-3 \= &
Missing \cr inserted.
leading text: \[\begin{aligned}& 11.36-3 \= &
Misplaced \cr.
leading text: \[\begin{aligned}& 11.36-3 \= &
Missing \cr inserted.
leading text: \[\begin{aligned}& 11.36-3 \= &
Misplaced \cr.
leading text: \[\begin{aligned}& 11.36-3 \= &
Missing \cr inserted.
leading text: \[\begin{aligned}& 11.36-3 \= &

Q. \quad x-\frac{1}{x}=2. Find x^6+\frac{1}{x^6}
Sol wo r \quad x-\frac{1}{x}=2
squaring both sides, we got

    \[\begin{aligned}& x^2+\frac{1}{x^2}-2 \cdot x \cdot \frac{1}{x}=4 \\Rightarrow & x^2+\frac{1}{x^2}=4+2=6\end{aligned}\]


Cubing both sides, we get

    \[\begin{aligned}& x^6+\frac{1}{x^6}+3 \cdot x^2 \cdot \frac{1}{x^2}\left(x^2+\frac{1}{x^2}\right)=6^3=216 \\Rightarrow & x^6+\frac{1}{x^6}+3 \cdot 6=216 \\Rightarrow \quad & x^6+\frac{1}{x^6}=216-18=\frac{198}{\text { Ans }} \& \text { other formats of } x-\frac{1}{x} \text { type }\end{aligned}\]


# Other formats of x-\frac{1}{x} type
Q. If x^2-3 x-1=0
then the value of \left(x^2+8 x-1\right) \cdot\left(x^3+x^{-1}\right)^{-1}
Solution: We are given a quadratic equation

    \[x^2-3 x-1=0\]


If we divide whose equation thoughts, then

    \[\begin{aligned}& \frac{x^2-3 x-1}{x}=0 \\Rightarrow & x-3-\frac{1}{x}=0 \\Rightarrow & x-\frac{1}{x}=3\end{aligned}\]


The expression that we have to find out is

    \[\frac{x^2+8 x-1}{x^3+\frac{1}{x}}\]


If w divide both numerator and Denominator by x, then

    \[\Rightarrow \frac{\frac{x^2+8 x-1}{x}}{\frac{x^3+\frac{1}{x}}{x}}=\frac{\left(x-\frac{1}{x}\right)+8}{x^2+\frac{1}{x^2}}\]


We have to first find out the value of x^2+\frac{1}{x^2}.

    \[x-\frac{1}{x}=3\]


squaring both sides, we get

    \[\begin{aligned}& 1 x^2+\frac{1}{x^2}-2 \cdot x \cdot \frac{1}{x}=3^2=9 \& \Rightarrow \quad x^2+\frac{1}{x^2}=9+2=11\end{aligned}\]


If we plug the value in expression then,

    \[\frac{3+8}{11}=\frac{11}{11}=1\]


Q. If x\left(3-\frac{2}{x}\right)=\frac{3}{x} then x^2+\frac{1}{x^2}= ?
Solverion: We have

    \[\begin{aligned}& x\left(3-\frac{2}{x}\right)=\frac{3}{x} \\Rightarrow & 3 x-\frac{2}{x} \cdot x=\frac{3}{x} \\Rightarrow & 3 x-\frac{3}{x}=2 \\Rightarrow & x-\frac{1}{x}=\frac{2}{3}\end{aligned}\]


Squaring both sides, we get

    \[\begin{aligned}& x^2+\frac{1}{x^2}-2 \cdot x \cdot \frac{1}{x}=\left(\frac{2}{3}\right)^2=\frac{4}{9} \\Rightarrow & x^2+\frac{1}{x^2}=\frac{4}{9}+2=\frac{22}{9} \text { or } 2 \frac{4}{9} .\end{aligned}\]

Q. If x\left(5-\frac{2}{x}\right)=\frac{5}{x}. find x^2+\frac{1}{x^2}.
Ans. \frac{54}{25}

Q. If x-\frac{1}{x}=5 then find

    \[\frac{x^6+3 x^3-1}{x^6-8 x^3-1}\]


Solution: If we divide both numerator and denominator by x^3, then

    \[\frac{\left(x^3-\frac{1}{x^3}\right)+3}{\left(x^3-\frac{1}{x^3}\right)-8}\]


We are given,

    \[x-\frac{1}{x}=5\]


Cubing both sides, we get

    \[\begin{aligned}& x^3-\frac{1}{x^3}-3 \cdot x \cdot \frac{1}{x}\left(x-\frac{1}{x}\right)=5^3=125 \& \Rightarrow \quad x^3-\frac{1}{x^3}=125+3\left(x-\frac{1}{x}\right) \&=125+3 \cdot 5 \&=125+15 \&=140\end{aligned}\]

    \[\frac{140+3}{140-8}=\frac{143}{132}=\frac{13}{12}\]


Q. If x\left(3-\frac{2}{x}\right)=\frac{3}{x}. Find x^3-\frac{1}{x^3}.
Ans. \quad \frac{62}{27}.

    \[x^5-\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3-\frac{1}{x^3}\right)\]


How do we derive x^5-\frac{1}{x^5} ?

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *